

A Task Scheduling Method for Data Intensive Jobs in
Multicore Distributed System

Kazuo Hajikano*1 Hidehiro Kanemitsu*2 Moo Wan Kim*3

*1 Department of Information Technology and Electronics, Daiichi Institute of Technology
1-10-2, Kokubu-Chuo, Kirishima, Kagoshgima, 899-4395, Japan

*2 Global Education Center, Waseda University
1-104, Totsuka-Chou, Shinjuku, Tokyo, 169-8050, Japan

*3 Department of Informatics, Tokyo University of Information Sciences
4-1, Onaridai, Wakaba, Chiba, 265-8501, Japan

Abstract: On task scheduling methods for a work-flow type job with precedence constraint among tasks over
heterogeneous distributed environment, methods based on list scheduling are well known. These are considered
to not effective as expected about the response time in data intensive jobs. We propose a task scheduling method for
data intensive jobs in Multicore Distributed System, which can reduce the response time with keeping parallelism in
execution. We show advantage of proposed method against existing methods with experimental simulations.
Key word: task scheduling, multicore, heterogeneous, data intensive

1. Introduction
On task scheduling methods for a work-flow type job

with precedence constraint among tasks over
heterogeneous distributed environment, methods based
on list scheduling, e.g., HEFT [1], PEFT(Predict Earliest
Finish Time)[2], CEFT(Constrained Earliest Finish
Time)[3] are well known. These methods are effective
for reducing the response time against computationally
intensive jobs. On the other hand, these are considered
to not to get improvement as expected about the response
time in data intensive jobs such as MapReduce because
they try to insert each task in the idle time for each
processor without considering the actual data transfer
time. We propose a task scheduling method for data
intensive jobs in Multicore Distributed System, which
can reduce the response time with keeping parallelism in
execution.

2. Assumed Model
2.1 Job Model
 We assume a job to be executed among distributed
processor elements (PEs) is a Directed Acyclic Graph
(DAG), which is one of task graphs. Let be the DAG,
Gscls = (Vs, Es, Vscls), where s is the number of task
merging steps (described in 2.3), Vs is the set of tasks
after the s-th task merging step, Es is the set of edges
(data communications among tasks) after the s-th task
merging step, and Vscls is the set of clusters which
consists of one or more tasks after the s-th task merging
step. An i-th task is denoted as nsi. Let W(nsi) be a size
of nsi, i.e., W(nsi) is the sum of unit times taken for being
processed by the reference processor. We define data

dependency and direction of data transfer from nsi to nsj
as esij. And C(esij) is the sum of unit times taken for
transferring data from nsi to nsj over the reference
communication link. One constraint imposed by a DAG
is that a task cannot be started execution until all data
from its predecessor tasks arrive. If a task does not have
any immediate predecessor, it is called START task, and
if a task does not have any immediate successors, it is
called END task.

2.2 System model

We assumed each computer is completely connected
to others, with heterogeneous processing speed and
communication bandwidths. Each computer has one or
more PE, i.e., core, with heterogeneous processing speed.
Data transfer time within one computer is supposed to be
negligible.

2.3 Definitions of a Cluster and Task Clustering
 We denote the i-th cluster in Vscls as clss (i). If nsk is
included in clss (i) by “the s + 1th task merging”, we
formulate one task merging as {clss+1 (i) ← clss (i) U
{nsk}. If any two tasks, i.e., nsi and nsj are included in the
same cluster, this means that they are assigned to the
same processing element. Then the communication
between nsi and nsj is localized, so that communication
time between those is zero. Task clustering is a set of
task merging steps, that is finished when a certain criteria
is satisfied.

3. Previous work

We proposed a method for efficient use of
computational resources each of which has a single

13第一工業大学研究報告
第27号（2015）pp.13－17

Kazuo Hajikano*1　Hidehiro Kanemitsu*2　Moo Wan Kim*3

A Task Scheduling Method for Data Intensive Jobs in
Multicore Distributed System

processor in a heterogeneous distributed system [4]. The
method automatically derives the set of mapping
between each processor and each assignment unit (i.e.,
the set of tasks in a DAG).

For each PE, we derivate the lower bound of a cluster
size to be assigned to the PE theoretically, considering
amount of data and load for a job , and processing
performance and bandwidth for each PE. With those

14 第一工業大学研究報告　第27号（2015）

lower bounds, this method can keep parallelism even for
data intensive jobs with adequate number of PEs
involved in execution.

We also introduced WSL (Worst Scheduling Length)
as the index of lower bound and upper bound of the
response time, which can be calculated before
scheduling. It is proved that WSL should be minimized
to minimize the response time.

3.1 WSL and level of task
 WSL means the largest value that the response time can
take when every task is executed as late as possible.

 When a task in a cluster is executed as late as possible
and a path including the task from START task to END
task is identified, the level of the task means the response
time along the path, that is, summation of the maximum
start time of the task and the maximum elapsed time of
the task from its starting time to completion of the END
task. Largest value of the level in a cluster is defined as
the level of that cluster. Largest value of the level among
clusters is defined as WSL and we call the cluster with
the WSL as “the cluster dominating WSL” as well as call
the task with WSL as “the task dominating WSL”. Also,
the path that “the task dominating WSL” belongs to is
called as “the path dominating WSL “

In Fig.1, level of task F = tlevel(F) + blevel(F), where
tlevel(F) means elapsed time after execution of START
task until task F become ready to execute, while
blevel(F) means expected longest elapsed time after
executing task F until completion of END task . LV(j),
i.e., the level of Cluster cls(j) is largest level among those
of task E, F, G and H.

4. Proposal
To get more reduction of the response time for data

intensive jobs, we enhance the method proposed in [4] as
follows.
 - Considering data transfer time, generated new cluster

is assigned to unassigned core belonging to the
computer having already assigned other cores.

 - Using WSL as priority for task scheduling.
Our proposal is consist of following 3 processes.

4.1 Process １ : Lower bound derivation for each
cluster execution time and PE selection
 At first, we define δ is a lower bound of cluster
execution time. Fig. 2 (a) shows state after 4 task
mergings. There are unmerged tasks each of which is
assigned to the “virtual PE” with the maximum
processing speed and communication bandwidth,
respectively. On the other hand, other tasks are assigned
to actual PEs. In Fig. 2 (b), we temporarily assume that
tasks on the path dominating WSL will be clustered and
each cluster is assigned to an identical PE (in (b), the PE
is PP). From procedure 1) to 3) in (b), We get δopt for
selected PP to minimize upper bound for WSL(For more
details about δopt derivation, refer to the literature[2].).
Once δopt is obtained, every cluster in (b) is restored to
clusters in (a). We calculate δopt and ⊿WSL for every
candidate. Candidates are unassigned cores belonging to
computers, one of whose cores have already been
assigned to the existing cluster at least. If there is no such
core, unassigned cores belonging to any computers
would be candidates. Among candidates, the core with
minimized ⊿WSL is selected to be assigned to new
cluster in (c).

4.2 Process 2: Task clustering

 We select the cluster with maximum level as pivot
and the succeeding cluster dominating level of pivot as
target. These two are merged into a new cluster. This
merging step is repeated until the new cluster‘s execution
time exceeds the δopt. In (c), it is supposed that we get the
new cluster after six task mergings.

Process 1 and 2 are repeated until all tasks are merged
into clusters assigned to cores.

4.3 Process 3: Task scheduling.
 At actual scheduling phase, the level for each ready
task is recalculated with actual processor performance
and communication bandwidth, then the task with the
maximum level is chosen to be executed next.

 Fig. 3 shows state after completing all task mergings.
i.e., all tasks are merged into clusters assigned to
different cores. Table 1 shows the level of each ready
task. There are three ready tasks at 3rd row at Table 1,
i.e., B, E and F. Task B belongs to the cluster assigned
to core P1,1 while task E and task F belong to the cluster
assigned to core P1,2. Therefore, task B can be executed

15Hajikano and Kanemitsu and Kim：A Task Scheduling Method for Data Intensive Jobs in Multicore Distributed System

independently of task E and F. Because of task E and F
assigned to same core, we have to choose task E or F to
be executed next. Level of task E is 8.83 while that of
task F is 7.58 (middle of row), therefore Task E is chosen
to be executed next (3rd column).

5. Experiment
5.1 Objectives

We conducted the experimental simulation to confirm
advantages of our proposal against existing methods, i.e.,
HEFT and PEFT in term of response time.

5.2 Experimental Environment

 In the simulation, a random DAG is a generated. In
the DAG, each task size and data size are decided
randomly. Also CCR (Communication to Computation
Ration) [5] is chosen as 1, 5 and 10. The max to min ratio
in term of data size is set to 2, 5 and 10. Also, the max to
min ratio in term of communication bandwidth is set to
2, 5 and 10.

 The simulation environment was developed by
JRE1.6.0_0, the operating system is Windows XP SP3,
the CPU architecture is Intel Core 2 Duo 2.66 GHz, and
the memory size is 2.0 GB.

5.3 Comparison about response time
 Fig. 4 shows comparison results. In the Figures, α
and β mean max to min ration of the processing speed
and communication bandwidth, respectively. In both
figures, vertical axis show relative response time where
response time of proposed method is “1.00”.
From comparison result in Fig. 4, it is concluded that
response time of proposed method is better than that of
existing method. Especially, As CCR is larger, that is, in

more data intensive case, proposed method shows better
performance.

6. Conclusion
 We presented a task scheduling method for data
intensive jobs in Multicore Distributed System. We
confirmed that advantage of proposed method against
existing methods with experimental simulations.

References
[1] H. Topcuoglu, et el., “Performance-Effective and
Low-Complexity Task Scheduling for Heterogeneous
Computing, ” IEEE Trans. on Parallel and Distributed
Systems, Vol. 13, No. 3., pp. 260-274,2002.
[2] H. Arabnejad, et.el, “List Scheduling Algorithm for
Heterogeneous Systems by an Optimistic Cost Table”,
IEE Trans. on Parallel and distributed systems, vol. 25,
No. 3, pp. 682-694, March 2014
[3] M. A. Khan, “Schedule for heterogeneous systems
using constrained critical paths”, Parallel Computing,
vol. 38, pp 175-193, 2012
[4] H. Kanemitsu, et el, “ A processor Mapping Strategy
for Processor Utilization in a Heterogeneous Distributed
System”, Journal of Computing, Vol. 3, Issue 11, pp1-8,
[5] O. Sinnen and l. A. “Sousa, Communication
Contention in Task Scheduling”, IEE Trans. on parallel
and Distributed Systems, Vol. 16, No. 6, pp503-515,
2005

16 第一工業大学研究報告　第27号（2015）

17Hajikano and Kanemitsu and Kim：A Task Scheduling Method for Data Intensive Jobs in Multicore Distributed System

