高減衰ゴムを用いた靱性型高倍率パッシブ制振機構の開発 ーダンパーと滑り接合部の加力実験-

新原 刷¹·古田 智基²

 「第一工業大学 建築デザイン学科卒業(現鎌田建設株式会社)
²第一工業大学 指導教授 建築デザイン学科 (〒899-4395 鹿児島県霧島市国分中央1-10-2)
E-mail:t-furuta@daiichi-koudai.ac.jp

Development of Passive Response Control System with High Stiffness and Ductility for Wooden houses

Tsuyoshi NIIHARA¹, Tomoki FURUTA²

木造住宅用の様々な制振デバイスが開発され、実用化されているが、壁倍率を取得しているも のは少なく、壁量計算では算入されていないことが多い。それゆえ、エンドユーザーにとっては、 その効果が分かりにくいものとなっている。

本研究では、高減衰ゴムを用いて、高い剛性とエネルギー吸収性能を有するパッシブダンパー を開発し、その性能評価を行う。なお、このダンパーは、エンドユーザーにもその性能を把握し やすいよう、壁倍率を取得することを目標としており、滑り機構を併用することで、システム全 体でバイリニアに近い復元力特性を実現する。

Key Words: 高減衰ゴム,制振,滑り接合部,在来軸組工法,等価粘性減衰定数

1. 研究の背景及び目的

これまで、本研究室では木造住宅を対象とし た高減衰ゴムを用いた制振デバイスの研究開発 を展開しており、デバイスを適応した住宅の巨 大地震時の最大層間変形角(変位)を半分以下 に低減させる効果が確認されている。しかし、 高減衰ゴムのせん断応力は、せん断ひずみの増 加に対して増加し続ける特性があるため、これ を用いた軸組の壁倍率評価は低くなり、本来の 制振効果が反映されていない状況にある。

しかし、制振構造を普及させる場合、木造住 宅の構造計算で最も普及している壁倍率計算は 無視できないため、現行の壁倍率で評価できる 制振機構を検討する。すなわち、本研究では壁 倍率 7.0 を目標値として、高減衰ゴムを適用した 制振デバイスの塑性設計を試みる。

2. 壁倍率 7.0 を確保するための目標スペックの 設定

耐力壁の耐力を向上させるに連れて軸組に対 する引き抜きの力が生じ、軸組の柱脚やデバイ スと軸組との接合部が破壊する。デバイス自体 が座屈する。建物全体が偏心しやすくなる。な ど想定外の破壊が起こる可能性がある。そのため、これまでの研究により壁倍率 7.0 を限界と考え、目標値を 7.0 とした。

目標壁倍率 7.0 を確保するための軸組の荷重-変位関係を、図 1 の破線で示す。一点鎖線は、 これまでの研究で確認された荷重-変位関係で ある¹⁾。この初期剛性を約3倍に、変形性能を 2 倍にすることで壁倍率 7.0 の確保が可能となる。 そこで、図2と図3に示す高減衰ゴムと摩擦材の 特性により、図 1 の実線で示した目標バイリニ アを目標スペックとした。

79

3. ダンパーおよびシステムの概要

ダンパーは、図4のように、大小2つの鋼管を 入れ子にし、その間のスペースに高減衰ゴムを 充填したものであり、外筒と内筒の長さ方向に 相対変位が生じると、高減衰ゴムにせん断ひず みが生じて、剛性および減衰力を発生する。

高減衰ゴムは、せん断ひずみが 100%程度以上 になるとハードニングが生じて、減衰力が低下 する。さらにせん断ひずみが増加すると、ゴム の破断や、剥離が生じる。そこで、ゴムのせん 断ひずみが 100%付近で、滑り接合部に滑りが生 じるようにシステムの設計を行う。

このダンパーは2本を1組とし、図5のように K型に設置する。壁倍率取得を目標とする場合、 高減衰ゴムのような、ひずみとともに応力が増 加しつづける復元力特性では、塑性率 μ が小さ く、構造特性係数 Ds が大きくなりがちであり、 高減衰ゴムの剛性を生かすことができない。そ こで、滑り接合部を設け、ある荷重に達すると 滑りが生じて、耐力が頭打ちになるようにする。 ここでは、壁倍率 7 として木造住宅に搭載する ことを目標としており、バラツキや低減係数も 考慮し、図 6 のような復元力特性になるように 各部の設計を行った。その結果、ダンパーの剛 性は 8.6kN/mm、滑りが生じる荷重は 100kN とな った。

4. 増分解析によるバイリニアモデルの検証① 機構の解析モデル

図5の機構の解析モデルを図7に示す。高減衰 ゴムの復元力特性についてはトリリニアモデル とし、摩擦材はバイリニアモデルとした。解析 モデルのパラメータは、図2と図3の荷重-変位 関係をもとに決定した。

② 増分解析

図 7 の解析モデルの増分解析を実施した結果、 図 8 の実線に示すバイリニアモデルが再現できることを確認した。

5. ダンパーの動的加力実験

ダンパーは、表1のとおり、外筒と内筒の径 を2種類とし、また、剛性を2/3としたものも製 作した。各試験体に使用したゴムは同じもので あり、せん断剛性 G=0.8N/mm²である。加振パラ メータは、表2に示す7とおりとし、各加振は正 負4回繰り返しとした。写真1に実験の実施状況 を示す。

図9にダンパーNo.1の荷重-変位関係、図10 に最大変位時の割線剛性と等価粘性減衰定数 (以下 Heq と記す)を示す。いずれも、3回目の ループの値である。剛性は、目標よりやや低い 値であり、Heq は最大で25%程度である。比較 的小さい振幅での加振においては、治具に若干 のガタがあったため、Heq は概して小さめの評価 である。

No.	外筒 内径 (mm)	内筒 外径 (mm)	ゴム厚さ (mm)	ゴム長さ (mm)	せん断ひずみ 100%時設計 耐力 (kN)	設計剛性 (kN/mm)
1	75	65	5.0	243	42.8	8.6
2	83	70	6.5	293	56.3	8.7
3	75	65	5.0	162	28.5	5.7
4	83	70	6.5	196	37.7	5.8

表1 製作したダンパー

表 2 加振パラメータ

	1 2	- NH N	K	
No.	振幅	周波数	最大速度	想定変形角
	(mm)	(Hz)	(mm/sec)	(rad)
1	6	静的加力		1/67
2	1	3.0	18.8	1/400
3	2	2.0	25.1	1/200
4	4	1.5	37.7	1/100
5	6	1.0	37.7	1/67
6	9	0.67	37.9	1/50 以上
7	12	0.5	37.7	1/50 以上

|写真1| ダンパー実験の状況

図 9 ダンパーNo.1の荷重(kN)-変位(mm)関係

図 10 各ダンパーの剛性と等価粘性減衰定数

6. 滑り接合部の静加力実験

図 11 に滑り接合部の詳細を示す。H 形鋼のウ エブの両側に摩擦材(アルミ)を挟みこみ、高 カボルトで締め付けたものである。写真 2 に実 験の実施状況を示す。

各高力ボルトを 430N·m で締め付け、静的加 力を行った結果を図 12 に示す。概ね、目標とす る 100kN で滑りが生じたが、変位の増減ととも に、荷重の変動が生じた。これは、H形鋼のウエ ブの表面処理や厚さの精度の影響と考えられ、 今後、改良が必要であると考えている。

写真2 滑り接合部実験の状況

図 12 滑り接合部実験の結果

7. 増分解析による壁倍率の推定

今回の実験で得られたダンパーと滑り接合部 の実験結果をモデル化して図 13 のようなフレー ムモデルを作成し、増分解析を実施した。ダン パーの復元力特性モデルを図 14 に示す。滑り接 合部は、100kNで降伏する完全弾塑性型の復元力 特性とした。

図 15 は、増分解析で得られた荷重-層間変位 関係である。この荷重-層間変位関係を評価す ると、壁倍率は 9.96 であり、バラツキ係数を 0.95、低減係数 αを 0.85 とした場合は 8.0 となっ た。従って、各要素の性能は、目標に達してい ると考えられる。

図 14 ダンパーの復元力特性モデル

図 15 増分解析結果

8. まとめ

本研究で以下の知見を得た。

- 1) 目標壁倍率 7.0 を確保するためのバイリニ アモデルの設定を行った。
- デバイスの初期剛性を3倍、変形性能を2 倍にすることで壁倍率7.0の確保が可能で あることを確認した。
- K型を基本として、高減衰ゴムと摩擦材を 適用した新たな制振機構を提案した。
- 4)提案した制振機構をモデル化し、増分解析 を実施した結果、目標バイリニアモデルが 再現できることを確認した。
- 5) 高減衰ゴムダンパーに滑り接合部を併用し たパッシブ制振機構のダンパーと滑り接合 部の実験を行い、各要素は、目標の性能に 達していることを確認した。

今後、このシステムと軸組との接合部仕様を 検討し、軸組に搭載した状態での実験を行う。 実験の結果、摩擦材を用いたデバイスの治具を 再検討する必要がある。

【参考文献】

 古田智基、中尾方人:高減衰ゴムデバイスを 筋かい部材として用いた木造住宅の地震応答 性状の評価、日本建築学会大会学術講演梗概 集,C-1分冊,pp.429-430,2014.9